Методы оценки риска

Введение

На практике в качестве основной метрики, способной производить расчет и сравнение рисков по различным финансовым вложениям является мера VaR

(Value at Risk). В RiskMetricks, составленной банком J.P.Morgan в 1996 году, именно эта мера является основной для оценки рыночных рисков. С тех пор многие банки и финансовые организации начали следовать данному техническому документу для оценки рисков собственных вложений, и данная величина неформально стала главной мерой рыночного риска.

Рыночный риск. Определение

Рыночный риск (англ. Market risk) – это вероятность неблагоприятного изменения стоимости активов. На изменение стоимости влияют множество макро-, мезо-, микроэкономических факторов, к которым можно отнести цены на сырье (нефть, сталь, платина и т.д.); цены на драгоценные металлы (золото, серебро); изменения отраслевых индексов производства, национальных показателей (ВВП, безработица, ключевая процентная ставка, инфляция), уровня спроса и предложения и т.д.Рыночные риски находятся в системе финансовых рисков и можно выделить их следующие виды:

  • Фондовый риск (Equity risk) – вероятность потерь в случае неблагоприятного изменения стоимости ценных бумаг на фондовом рынке.
  • Процентный риск (Interest rate risk) – вероятность потерь при изменении банковских процентных ставок.
  • Товарный риск (Commodity risk) – вероятность непредвиденных потерь в случае изменения стоимости товаров.
  • Валютный риск (Currency risk) – вероятность потерь из-за изменения курса валют.

Рыночные риски оценивают различные инвестиционные компании, инвестиционные и хеджевые фонды, частные инвесторы, банки, предприятия, финансовые агенты, поставщики и т.д. для минимизации возможных убытков и создания резервов. Как мы видим, рыночные риски влияют на самых различных участников финансового рынка.

Обязательно ли оценивать риски?

Согласно Приказу Минтруда от 19.08.2016 г. №438Н работодатель обязан принимать меры по предупреждению несчастных случаев и случаев ухудшения здоровья работников, производственного травматизма и профессиональных заболеваний, в том числе посредством управления профессиональными рисками. Работодатель обязан организовать управление профессиональными рисками.

Непроведение оценки рисков (ч. 1 ст. 5.27.1 ) предусматривает наступление административной ответственности.

Проект изменения 10-го раздела ТК по охране труда предусматривает необходимость работодателя ознакомиться с уровнем профессиональных рисков в отношении конкретных сотрудников помимо условий труда по результатам специальной оценки.
Повторные нарушения (ч. 5 ст. 5.27.1 ) предусматривают наступление ответственности в отношении организаций и должностных лиц за аналогичные нарушения об охране труда и повторные нарушения.

Предусмотрен штраф до 40 000 руб. для должностных лиц и до 200 000 руб. для организаций. Должностное лицо может быть дисквалифицировано на срок до 3-х лет, а деятельность компании приостановлена на срок до 90 суток.

Повторным считается не смежное и не похожее нарушение, а аналогичное, за которое либо должностное лицо, либо организация были привлечены к ответственности.
Со вступлением в силу инспекторы получили полный перечень документов, которые подлежат проверке, а также в какой последовательность нужно контролировать оценку профессиональных рисков. Перечень документов, подлежащих проверке по профессиональным рискам указана в пункте 10:

а) перечень (реестр) опасностей;
б) документ (раздел Положения о СУОТ работодателя), описывающий используемый метод (методы) оценки уровня риска;
в) документ, подтверждающий проведение оценки уровней рисков, с указанием установленных уровней по каждому риску;
г) документ, содержащий перечень мер по исключению, снижению или контролю уровней рисков.

Методы оценки риска

Для того чтобы управлять возможными потерями и определять резервы для страхования потерь необходима количественная оценка риска. Основная аксиома любого управления заключается в том, что управлять можно только тем, что можно количественно измерить. Все методы оценки рыночных риском можно условно разделить на две группы:

  1. Статистические методы оценки риска
    1. Стандартное отклонение доходностей (σ)
    2. Метод Value at Risk (Var)
    3. Метод CVaR
  2. Экспертные методы оценки риска
    1. Рейтинговые методы
    2. Бальные методы
    3. Метод Дельфи

К преимуществам статистических методов можно отнести возможность объективной оценки вероятности возникновения непредвиденных убытков и их абсолютного размера. Экспертные методы оценки позволяют учесть слабоформализуемые факторы риска и разработать различные сценарии его снижения.

Г.Марковиц в начале 60-х годов предложил оценивать риск как изменчивость стоимости ценных бумаг на фондовом рынке. То есть чем сильнее изменяется цена актива, тем выше риск вложения в него. Недостатками данного способа были в неспособности спрогнозировать размер и вероятность будущих убытков.

Метод оценки рыночного риска. Мера риска VaR (Value at Risk). Что такое VaR?

В 80-е годы был предложен новый критерий риска – VaR (Value at Risk), который позволил комплексно оценить возможные убытки в будущем с выбранной вероятностью и за определенный промежуток времени. Для расчета меры риска VaR на практике используют несколько способов:

  • Метод исторического моделирования («дельта нормальный», «ручной способ»).
  • Метод параметрической модели.
  • Статистическое (имитационное) моделирование с помощью метода Монте-Карло.

Зачем нужен VaR?

VaR имеет много применений:

  • банки определяют текущий риск по отделам и банку вообщем;
  • трейдеры используют VaR в торговых стратегиях (например для определения момента выхода из сделки);
  • частные инвесторы для выбора менее рискованных вложений;

Управление рисками

Сначала давайте разберемся что такое управление рисками и зачем это надо.

“Управление рисками это процесс обнаружения, анализа и принятия или смягчения неопределенности в инвестиционных решениях. В сущности, управление рисками происходит всегда когда инвестор или управляющий фондом анализирует и пытается оценить потенциальные убытки и затем принять(или не принять) необходимые меры, учитывая его инвестиционные цели и толерантность к риску”.

Почему управление рисками актуально? Люди не любят проигрывать больше чем любят выигрывать. То есть, если человеку предлагают с 50% выиграть 110$ и с 50% проиграть 100$, то он скорее всего откажется, хотя потенциальный выигрыш и больше. Автор называет это ассиметрией потерь (loss averse).
Прогнозированием возможных потерь, к которым люди так чувствительны, мы с вами и займемся. Но перед тем как переходить к VaR нам нужно поговорить о понятии волатильности, без которой невозможно представить управление рисками.

Немного о Волатильности

Сначала рассмотрим два примера.
Пример 1 — пусть весь прошлый года акция А каждый день либо росла на 3%, либо теряла -1%. При этом эти два события были независимы и равновероятны. Если наши вложения составляют 100$, то мы можем с высокой вероятностью сказать, что завтра тенденция сохранится и мы либо получим 3$, либо потеряем -1$ с одинаковой вероятностью. Другими словами вероятность получить +3$ равна 50% и вероятность потерять -1$ тоже равна 50%. Мы даже можем сказать, что ожидаемая прибыль каждый день равна 1$ (3$*50%-1$*50%). Но как мы увидим позже, ожидаемая прибыль это не то что нас интересует при управлении рисками. Для нас важны именно убытки, и с возможными убытками здесь все ясно — с вероятностью 50% мы можем потерять затра $1.

Случайный доход +3% или -1%
Теперь давайте рассмотрим пример 2. Есть информация о ежедневном доходе акции В за прошлый год. Свойства дохода:

  • принимал одно из четырех значение -4%, -3%, +5%, +6%;
  • вероятность каждого из четырех событий одинаковая — 25%;


Случайный доход -3%, -4%, 5% или 6%
Я специально подобрал значения так, чтобы среднее значение было +1%(-4%*25% -3%*25% +5%*25% +6%*25%) как и в первом примере. То есть, если у нас есть акции на 100$, то ожидаемое значение завтра тоже будет 1$.

Сравнение примера 1(-1%, +3%) и примера 2(-3%, -4%, 5%, 6%)
Хотя ожидаемые значения в двух случаях одинаковы (+1%), уровень риска разный, так как размер убытков может быть выше во втором случае. Это и есть волатильность.

Волатильность, изменчивость (англ. volatility) — статистический финансовый показатель, характеризующий изменчивость цены. Является важнейшим финансовым показателем и понятием в управлении финансовыми рисками, где представляет собой меру риска использования финансового инструмента за заданный промежуток времени.

Или своими словами, волатильность — это сила разброса значений. Чем больше разброс, тем выше волатильность и тем труднее нам делать предположение о цене в будущем. Напрашивается вывод, чем выше волатильность, тем выше риск. Казалось бы, что волатильность это тот показатель, который нам нужен.
Но у волатильности есть один существенный недостаток для управления рисками. Она учитывает как разброс прибылей так и разброс убытков. Например, если цена на акцию резко вырастет, то и волатильность увеличится. Хотя риск, с точки зрения возможных потерь, останется на том же уровне. Эту проблему решит VaR, но перед тем как переходить к VaR давайте разберемся с проблемой оценки убытков.
Проблема 1. Как описать потенциальные убытки?
Если в первом примере прогноз убытков на завтра был -1% с вероятностью 50%, то во втором ситуация сложнее. Мы можем сказать что:

  • с вероятностью 25% мы потеряем 3%;
  • с вероятностью 25% мы потеряем 4%;
  • c вероятностью 50% мы потеряем более 3%;

Все эти утверждения верны, а ведь у нас только 4 возможных исхода. В реальной жизни количество исходов может быть намного больше. Соответственно увеличится и количество утверждений, которые мы можем сделать о вероятности риска. А это усложняет донесение и анализ информации.
Проблема 2. Экстремальные значения.
Давайте представим, что прошлый год акция принимала значения от -5% до 5%, но в один день убыток был -10%. Если взять количество дней в году за 364 (для простоты забудем о выходных и праздниках), то вероятность повторения убытка в -10% равна 1/364=0.274%. Вероятность 0.274% довольно мала, ее трудно представить, а кто-то может посчитать ее вообще не существенной для рассмотрения. Как быть в этом случае?
В обоих этих случаях к нам на помощь и приходит VaR.

Оценка риска по методу VaR на основе исторического моделирования в Excel

Рассмотрим пример оценки риска актива на фондовом рынке по модели VaR на основе дельта нормального моделирования вероятности и размера убытка. Возьмем котировки акции ОАО «Газпром» и рассчитаем возможные убытки по данному виду актива. Для этого необходимо закачать котировки с сервиса finam.ru («Экспорт данных») или с сайта finance.yahoo.com, если вы будете оценивать рыночный риск для иностранных компаний. По рекомендации Bank of International Settlements для расчета VaR необходимо использовать не менее 250 данных по стоимости акции. Были взяты дневные котировки по ОАО «Газпром» за период 31.01.2014 – 31.01.2015.

Оценка рыночного риска методом Value at Risk (VaR)

На следующем этапе необходимо рассчитать дневную доходность акции ОАО «Газпром», воспользовавшись следующей формулой.

Доходность акции ОАО «Газпром» =LN(B6/B5)

Расчет доходности акции ОАО “Газпром”

Следует отметить, что корректность использования дельта нормального метода оценки риска достигается только при подчинении факторов риска (доходности) нормальному закону распределения (Гауссовому). Для определения принадлежности распределения доходности Гауссовому распределению можно воспользоваться классическими статистическими критериями ­– Коломогорова-Смирнова или Пирсона.

На следующем шаге необходимо рассчитать основные параметры распределения доходности: математическое ожидание и стандартное отклонение. Для этого воспользуемся встроенными формулами в Excel:

Математическое ожидание =СРЗНАЧ(C5:C255)

Стандартное отклонение =СТАНДОТКЛОН(C5:C255)

Расчет параметров функции распределения доходностей акции

Следующим этапом в расчете меры риска VaR является определение квантиля данного нормального распределения. В статистике под квантилем понимают – значение функции распределения (Гаусса) по заданным параметрам (математического ожидания и стандартного отклонения) при которых функция не превышает данное значение с заданной вероятностью. В нашем примере уровень вероятности был взят 99%.

Рассчитаем в Excel значение квантиля для распределения доходностей акции ОАО «Газпром».

Квантиль =НОРМОБР(1%;E5;F5)

Оценка квантиля в Excel

Прогнозирование будущей стоимости акции на основе метода VaR

Далее необходимо оценить какой возможно будет стоимость акции при заданных параметрах распределения доходности. Для этого можно воспользоваться следующей формулой:

где:

q – квантиль распределения доходностей акции;

Pt – стоимость акции в момент времени t;

Pt+1 – минимальная стоимость акции в следующем периоде времени t с заданным уровнем квантиля.

Для прогнозирования будущей стоимости акции (актива) на несколько периодов вперед следует использовать модификацию формулы:

где:

q – квантиль распределения доходностей акции;

Pt – стоимость акции в момент времени t;

Pt+1 – минимальная стоимость акции в следующем периоде времени t при заданном уровне квантиля;

n – глубина прогноза возможной минимальной стоимости акции.

Формула расчета будущей стоимости акции в Excel будет иметь вид:

Минимальная стоимость акции ОАО «Газпром» на следующий день =(1+G5)*B255

Минимальная стоимость акции ОАО «Газпром» через 5 дней =B255*(1+G5*КОРЕНЬ(5))

Прогнозирование минимальной стоимости акции с заданной вероятностью

Значения Pt+1 показывает, что с вероятностью 99% акции ОАО «Газпром» не опустятся ниже цены равной 137.38руб, а значение Pt+5 показывает возможную минимальную стоимость акции с вероятностью 99% на 5 следующих дней. Для расчета абсолютного значения возможного убытка следует определить процентное изменение стоимости акции. Формулы расчета в Excel будут следующие:

Относительное изменение стоимости акции

Относительное снижение стоимости акции на следующий день =LN(F9/B255)

Относительное снижение стоимости акции за пять дней =LN(F10/B255)

Абсолютное изменение стоимости акции

Абсолютное снижение стоимости акции на следующий день =F9-B255

Абсолютное снижение стоимости акции за пять дней =F10-B255

Таким образом читать экономический смысл показателя VaR заключается в следующем: в течение следующего дня стоимость акции ОАО «Газпром» с вероятностью 99% не окажется ниже 137,38руб. и абсолютные убытки не превысят 6,44руб (5%) на акцию. И аналогично для оценки VaR на пять дней вперед: в течение пяти дней стоимость акции ОАО «Газпром» с вероятностью 99% не опуститься ниже 129,42 руб., и потеря капитала не превысит 11% (14,4руб на акцию).

Мера риска VaR. Пример расчета в Excel

Шаги:

1. Получить данные о доходности акций в процентах. Скачать данные можно например с yahoo.finance.com. Yahoo предоставляет цены открытия, закрытия и тд. Мы рассмотрим цены закрытия(close*). Обратите внимания что на yahoo даты отсортированы в порядке убывания, так что можно отсортировать в порядке возрастания. Мы преобразуем цены закрытия в прибыль в процентах с предыдущего дня. Например, если цена вчера была 10$, а сегодня 15$, то прибыль в процентах будет (15$-10$)/10$ = 50%;
Преобразование данных из Yahoo и сортировка

Пример кода
 public Double calculateHistoricalVar(List<Double> prices, Double confidenceLevel, Double amount) { if (prices.isEmpty()) { return 0d; } List<Double> returns = getReturns(prices); Collections.sort(returns); double threshold = (returns.size() * (1 - confidenceLevel)); int intPart = (int) threshold; Double decimalPart = threshold - intPart; Double rawVar = returns.get(intPart); Double interpolatedPart = decimalPart * (returns.get(intPart) - (returns.get(intPart + 1))); return rawVar + interpolatedPart; } private List<Double> getReturns(List<Double> prices) { List<Double> result = new ArrayList<>(prices.size()); for (int i = 1; i < prices.size(); i++) { result.add(prices.get(i) / (prices.get(i - 1)) - 1); } return result; }

Немного о недостатках исторического метода и VaR вообщем:

  • Мы прогнозируем будущие, используя исторические данные. Это может быть хрупким предположение. Так как мы делаем предположение, что события из прошлого будут повторяться. Можно пытаться бороться с этим используя разные временные интервалы для подсчета VaR(год, месяц, день). Об этом мы поговорим ниже.
  • VaR ничего не говорит, о значениях за пределами порога, например 95%. Мы можем иметь две разных акции А и B с VaR 50$ при пороге 95% и 100 наблюдениях. Пусть 95 лучших наблюдений у А и В одинаковы и равны от -50$ до 45$ с шагом 1$. Но пять худших прибылей А = {-1000$, -800$, -700$, -600$, -500$}, а В = {-100$, -99$, -98$, -97$, -96$}. Очевидно что риск для B выше. Можно пробовать бороться с этим увеличивая порог(до 99%, 99.9%, 99.99% и тд.). Также существуют методы, специально направленные на устранения этих недостатков, например, Conditional VAR, который оценивает убытки, если потери превысили VaR. Но мы не будем рассматривать их в этой статье.

Вопросы которые могут возникнуть при работе с VaR:

  • Как выбрать период?
  • На это нет определенного ответа, все зависит от вашего инвестиционного горизонта. Банки обычно считают VaR для дней, пенсионные фонды, с другой стороны, часто считают VaR для месяцев.
  • Что делать если 95% это не целый номер элемента?
  • В нашем примере мы использовали 252 дня и порог 95%. Элемент, который мы отсекаем равняется 252*0.05=12.6. В нашем примере мы просто округли и взяли 13-ый элемент, но если быть точными, то наше значение должно быть где-то посередине. К сожалению, в нашем примере 12-ый и 13-ый элементы равны -2.71%. Поэтому, давайте представим, что 12-ый элементы равен -4%, а 13-ый -3%. Тогда VaR будет находится между -4% и -3%, ближе к -3%. А точнее -3.6%. Здесь к нам на помощь и приходит интерполяция. Формула выглядит так:

    b+(a-b)*k , где а-нижнее значение, b-верхнее значение и k-дробная часть (в нашем случае 0.6)

    Получается -3% + (-4% + 3%) * 0.6 = -3.6%

Заключение

Красота подхода VaR в том, что он отлично работает и для набора из нескольких акций или комбинации разных ценных бумаг. Например, VaR для набора из облигаций и валют дает нам оценку без особых усилий. А использование других способов, таких как анализ возможных сценариев, сильно усложняется из-за корреляции (связи) между ценными бумагами.

Метод исторического моделирования расчета VaR

Данный метод основан на предположении о стационарности поведения рыночных цен в ближайшем будущем.

Сначала выбирается период времени (число рабочих или торговых дней), за который отслеживаются исторические изменения цен всех активов, входящих в портфель. Для каждого периода времени моделируются сценарии изменения цены. Гипотетическая цена актива рассчитывается как его текущая цена, умноженная на прирост цены, соответствующий данному сценарию. Затем производится полная переоценка всего текущего портфеля по ценам, смоделированным на основе исторических сценариев, и для каждого сценария вычисляется, насколько может измениться стоимость текущего портфеля. После этого полученные результаты ранжируются по номерам в порядке убывания (от самого большого прироста до самого большого убытка). И, наконец, в соответствии с желаемым уровнем доверия величина VaR определяется как такой максимальный убыток, который равен абсолютной величине изменения с номером, равным целой части числа (1- квантиль при заданном уровне доверия) * число сценариев.

В отличие от параметрического метода, метод исторического моделирования позволяет наглядно и полно оценить риск, он хорошо подходит для оценки риска активов с нелинейными ценовыми характеристиками. Преимущество исторического моделирования заключается в том, что он исключает высокое влияние модельного риска и основан на реально наблюдавшейся в прошлом модели, без учета предположений о нормальном распределении или какой-либо другой стохастической модели динамики цен на рынке. Стоит отметить, что при расчете VaR данным методом присутствует высокая вероятность ошибок измерения при малом периоде исторической выборки. Кроме того, из выборки не исключаются наиболее старые наблюдения, что резко ухудшает точность модели.

Пример:
В 400 сценариях оказалось 300 случаев убытка и 100 случаев прироста. VaR (95%) – это абсолютная величина 21-го по величине убытка (400+1-1(1-0,05)*400=21, где 0,05 — квантиль при уровне доверия 95%), т.е. изменения под номером 380.

Параметрический метод расчёта VaR

Данный метод может использоваться для оценки рыночного риска финансовых инструментов, по которым банк имеет открытую позицию. Стоит отметить, что параметрический метод плохо подходит для оценки риска активов с нелинейными ценовыми характеристиками. Основным недостатком данного метода является предположение о нормальном распределении доходностей финансовых инструментов, которое, как правило, не соответствует параметрам реального финансового рынка. Для параметрического расчёта VaR необходимо регулярно рассчитывать волатильность котировок ценных бумаг, валютных курсов, процентных ставок или иных риск-факторов (переменная, от которой в наибольшей степени зависит изменение стоимости открытых банком позиций).
Базовая формула для определения VaR с учетом стоимости позиции актива имеет следующий вид:

VaR = V* λ *σ,
где:
λ – квантиль нормального распределения для выбранного доверительного уровня. Квантиль показывает положение искомого значения случайной величины относительно среднего, выраженное в количестве стандартных отклонений доходности портфеля. При вероятности отклонения от среднего, равного 99%, квантиль нормального распределения составляет 2,326, при 95% – 1,645;
σ – волатильность изменения риск-фактора. Волатильность – это стандартное (среднеквадратическое) отклонение изменения риск-фактора относительно его предыдущего значения;
V – текущая стоимость открытой позиции. Под открытой позицией понимается рыночная стоимость финансовых инструментов, купленных или проданных банком для получения прибыли или иных целей таким образом, что количество финансовых инструментов, находящихся в рассматриваемый момент на балансовых или забалансовых счетах, не равно нулю.

Пример
Инвестор владеет акциями компании стоимостью 10 млн.руб. Заданный уровень доверия 99% с временным горизонтом в один день. Однодневная волатильность цены акций (σ) = 2,15.
VaR = 10 * 2,33* 2,15 = 50,09 млн.руб.

Другими словами, вероятность того, что убытки инвестора превысят 50 млн.руб. в течение ближайших суток, равна 1 %. Убытки, превышающие 50 млн.руб. ожидаются в среднем один раз в 100 дней торгов.

Метод Монте-Карло расчета VaR

Метод Монте-Карло, или метод стохастического моделирования, является самым сложным методом расчета VaR, однако его точность может быть значительно выше, чем у других методов. Метод Монте-Карло очень схож с методом исторического моделирования, он также основан на изменении цен активов, только с заданными параметрами распределения (математическим ожиданием, волатильностью). Метод Монте-Карло подразумевает осуществление большого количества испытаний – разовых моделирований развития ситуации на рынках с расчетом финансового результата по портфелю. В результате проведения данных испытаний будет получено распределение возможных финансовых результатов, на основе которого путем отсечения наихудших согласно выбранной доверительной вероятности может быть получена VaR-оценка. Метод Монте-Карло не подразумевает свертывания и обобщения формул для получения аналитической оценки портфеля в целом, поэтому и для результата по портфелю и для волатильностей и корреляций можно использовать значительно более сложные модели. Метод заключается в следующем. По ретроспективным данным (периоду времени) рассчитываются оценки математического ожидания и волатильность. С помощью датчика случайных чисел данные генерируются с помощью нормального распределения и заносятся в таблицу. Далее вычисляется траектория моделируемых цен по формуле натурального логарифма и производится переоценка стоимости портфеля.

Так как оценка VaR методом Монте-Карло практически всегда производится с использованием программных средств, данные модели могут представлять собой не формулы, а достаточно сложные подпрограммы. Таким образом, метод Монте-Карло позволяет использовать при расчете рисков модели практически любой сложности. Преимущество метода Монте-Карло заключается еще и в том, что предоставляется возможность использовать любые распределения. Кроме того, метод позволяет моделировать поведения рынков — трендов, кластеров высокой или низкой волатильности, меняющихся корреляций между факторами риска, сценариев «что–если» и т.д. При этом стоит отметить, что данный метод требует мощных вычислительных ресурсов и при простейших реализациях может оказаться близок к историческому или параметрическому VaR, что приведет к наследованию всех их недостатков.
Недостатком метода оценки рисков VaR является то, что он игнорирует очень многие значительные и интересные детали, необходимые для реального представления рыночных рисков. VaR не учитывает, какой вклад в риск вносит рынок, какие структурные изменения портфеля увеличивают риск, а также какие инструменты хеджирования контролируют специфический риск. Модель не дает информации о наихудшем возможном убытке за пределами значения VaR (при заданном уровне доверия 95% остается неизвестным, какими могут быть потери в оставшихся 5% случаев).

В качестве альтернативной меры оценки рыночного риска может использоваться методология Shortfall, которая представляет собой среднюю величину потерь, превышающих VaR. Shortfall — более консервативная мера риска, чем VaR. Для одного и того же уровня вероятности Shortfall требует резервировать больший капитал. Таким образом, он позволяет учитывать большие потери, которые могут произойти с небольшой вероятностью. Он также более адекватно позволяет оценить риск в таком распространенном на практике случае, когда распределение потерь имеет «толстые хвосты» функции распределения (отклонения на краях распределения плотности вероятностей от нормального распределения).

Расчет риска в соответствии с Положением ЦБ РФ № 313-П

Величина рыночного риска включается в расчет норматива достаточности собственных средств (капитала) банка в соответствии с Инструкцией Банка России от 16.01.2004 г. № 110-И «Об обязательных нормативах банков». Порядок расчета кредитными организациями размера рыночных рисков предусмотрен Положением ЦБ РФ «О порядке расчета кредитными организациями величины рыночного риска» от 14.11.2007 г. N 313-П. Совокупная величина рыночного риска рассчитывается по формуле:

РР = 12,5 * (ПР + ФР) + ВР,
где:
РР — совокупная величина рыночного риска;
ПР — величина рыночного риска по финансовым инструментам, чувствительным к изменениям процентных ставок (далее — процентный риск);
ФР — величина рыночного риска по финансовым инструментам, чувствительным к изменению текущей (справедливой) стоимости на долевые ценные бумаги;
ВР — величина рыночного риска по открытым кредитной организацией позициям в иностранных валютах и драгоценных металлах.

Оценка меры риска VaR на основе «ручного способа» в Excel

Второй метод расчета меры риска VaR называется «ручным способом», так как позволяет не привязываться к распределению, по которому изменяется стоимость актива. Это одно из его главных преимуществ по отношению к дельта нормальному методу. Для оценки рыночного рискам будем использовать те же входные данные – котировки ОАО «Газпром». Этапы расчета VaR следующие:

Расчет максимума и минимума доходностей акции ОАО «Газпром»

По рассчитанной доходности акции ОАО «Газпром» определяем максимум и минимум доходности. Для этого воспользуемся формулами:

Максимальное значение доходности акции =МАКС(C5:C255)

Минимальное значение доходности акции =МИН(C5:C255)

Выбор количества интервалов группировки доходностей/убытков акции

Для ручного способа оценки риска необходимо взять количество интервалов деления группировки доходностей. Количество может быть любое, в нашем примере мы возьмем N=100.

Определение ширины интервала группировки доходностей

Ширина интервала или шаг изменения группы необходим для построения гистограммы и рассчитывается как деление максимального разброса доходностей к количеству интервалов. Формула расчета интервала следующая:

Размер интервала доходностей акции =(E5-F5)/H5

Оценка меры риска VaR “ручным способом”

На следующем этапе необходимо построить гистограмму распределения доходностей по выбранным интервалам. Для этого рассчитываем границы всех групп доходностей (всего их 100). Формула расчета следующая:

Граница доходностей акции =H5+$E$11

Расчет границы доходностей в Excel для акции ОАО “Газпром”

После определения границ групп доходностей строим накопительную гистограмму. Для этого заходим в надстройку «Данные» → «Анализ данных» → «Гистограмма».

В открывшемся окне заполняем «Входные интервалы», «Интервалы карманов», также выбираем опцию «Интегральный процент» и «Вывод графика».

Пример построения гистограммы доходностей ОАО “Газпром”

В результате будет сформирован новый рабочий лист с графиком и частотой попадания доходности/убытка в тот или иной интервал. График накопительным итогом имеет следующий вид:

Гистограмма накопительной доходности в Excel

Итак первый столбец полученной таблицы это квантиль данного для распределения доходностей/убытков, вторая частота попадания доходностей в тот или иной интервал, третья отражает вероятность появления убытков. В таблице с накопительной вероятностью попадания в тот или иной интервал необходимо найти уровень ~1%.

Определение квантиля доходностей акции “ручным способом”

Значение квантиля соответствует -0,039, тогда как при дельта нормальном способе оценки риска квантиль составил -0,045. Для оценки рисков воспользуемся уже полученными формулами оценки и рассчитаем размер убытков. На рисунке ниже показана оценка возможных убытков на следующий день и в течение пяти дней с вероятностью 1% составят 4 и 9% соответственно.

Результат оценки “ручным способом” меры риска VaR в Excel

Автоматизация процесса управления рисками

Как показывает практика, процесс идентификации и оценки рисков, а также разработки мероприятий по управлению рисками является достаточно трудоемким, в особенности для предприятий с большим количеством сотрудников и осуществляемых производственных операций. Ведь,

Чем больше в организации определено всевозможных профессиональных рисков и принято мер по управлению ими, тем меньше будет вероятность наступления неблагоприятных событий в последующем. См. статью «Производственный травматизм»

Именно поэтому наилучшим решением будет автоматизация процесса управления рисками.

Смотрите примеры систем автоматизации

Автоматизация данного процесса позволит упростить проведение работ по идентификации и оценке рисков, а также осуществлять контроль за выполнением мероприятий по управлению рисками. Появится возможность использовать уже ранее указанные данные о количестве сотрудников на каждом рабочем месте, о рабочих местах с опасными производственными факторами, отслеживать исполнение мероприятий с помощью напоминаний. Программа помогает осуществлять оценку и переоценку рисков при минимальных временных затратах, а также проводить внеплановую оценку рисков на основании произошедших неблагоприятных событий (несчастные случаи, профзаболевания).

Шаги подсчета VaR:

  1. Собрать исторические данные о доходе за определенный период (месяц, год);
  2. Отсортировать данные по возрастанию;
  3. Выбрать порог с которым мы хотим делать прогноз и “отрезать” наихудшее значение зная порог;

Для большей наглядности давайте выполним этот процесс нахождения VaR для реального примера. В качестве примера мы рассмотрим цены на акции Apple в 2015 году.

Источники

  • https://habr.com/ru/post/506044/
  • https://finzz.ru/metody-ocenki-riska-var-value-risk.html
  • https://consot.ru/ocenka-riskov-na-predpriyatii/
  • https://habr.com/ru/post/315154/
  • http://www.riskovik.com/riski/rynochnye/full/90/

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: